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Abstract Interaction of single-cell protein of Spirulina

platensis with aqueous AgNO3 and HAuCl4 was investi-

gated for the synthesis of Ag, Au and Au core—Ag shell

nanoparticles. Biological reduction and extracellular syn-

thesis of nanoparticles were achieved in 120 h at 37 �C at

pH 5.6. The nanometallic dispersions were characterized

by surface plasmon absorbance measuring at 424 and

530 nm for Ag and Au nanoparticles, respectively. For

bimetallic nanoparticles, absorption peak was observed at

509, 486 and 464 nm at 75:25, 50:50 and 25:75 (Au:Ag)

mol concentrations, respectively. High-resolution trans-

mission electron microscopy showed formation of

nanoparticles in the range of 7–16 (silver), 6–10 (gold) and

17–25 nm (bimetallic 50:50 ratio). XRD analysis of the

silver and gold nanoparticles confirmed the formation of

metallic silver and gold. Fourier transform infrared spec-

troscopic measurements revealed the fact that the protein is

the possible biomolecule responsible for the reduction and

capping of the biosynthesized nanoparticles.

Introduction

One of the major developments in nanotechnology is the

production and application of nanoparticles in biology.

New methods to produce nanoparticles are constantly

being studied and developed. Various physical and chem-

ical synthesis methods, aimed at controlling the physical

properties of the particles, are currently employed in the

production of metal nanoparticles. Most of the methods are

still in the developmental stage and various problems are

often experienced with the stability of the nanoparticle

preparations, control of the crystals growth and aggregation

of the particles [1–4]. Nanoparticles of free metals have

been extensively researched because of their unique

physical properties, chemical reactivity and potential

applications in catalysis [5], biological labelling [6], bio-

sensing [7], drug delivery [8], antibacterial activity [9],

antiviral activity [10], detection of genetic disorders [11,

12], gene therapy and DNA sequencing [13].

Concerning the biological application of nanoparticles it

has been emphasized that methods of synthesis through

biological systems viz, microorganisms including bacteria,

yeasts, fungi [14, 15] and diatoms [16–18] synthesizing

inorganic materials either intra or extracellularly would

make the nanoparticles more biocompatible [19]. Plants

used for synthesis of gold [20–24], silver [21–24] and

bimetallic nanoparticles [19] have also been reported.

Formation of phytochelation-coated CdS nanocrystallites

in a marine phytoplanktonic alga Phaeodactylum tricor-

nutum has been reported in response to Cd [25]. Konishi

et al. [26] observed that Fe (III) reducing bacteria Shewa-

nella algae can reduce Au (III) ions in anaerobic

environments. Recently, there is a study on the extracel-

lular biosynthesis of monodisperse gold nanoparticles

using the marine alga, Sargassum wightii [27].

Various species of cyanobacteria and algae have been

known to adsorb and take up heavy metal ions [28–31]. The

carboxyl groups of dead algae (algae biomass) apparently

bind to various metal ions [32], while intracellular poly-

phosphates as well as extracellular polysaccharides of live
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algae appear to participate in metal sequestrations [33, 34].

In this paper, we report the use of the highly structured

physical algal cells of Spirulina platensis for the biosyn-

thesis of pure metallic silver, gold and Au core/Ag shell

nanoparticles by simultaneous reduction of aqueous AgNO3

and HAuCl4.

Spirulina is gaining more attention in the field of med-

ical science because of its nutraceutical and pharmaceutical

importance [35]. It has been demonstrated that small

amounts of Spirulina reduced HIV-1 replication while

higher concentration totally stopped its reproduction. Thus,

the Spirulina mediated synthesis of Au, Ag and bimetallic

nanoparticles communicated in this work gains its impor-

tance in its medical application.

Experimental procedure

Spirulina platensis was collected from a fresh water lake of

Vellore in South India. Before experimentation, the bio-

mass was washed thrice in deionized water to remove the

unwanted materials. For the synthesis of silver nanoparti-

cles, silver nitrate (AgNO3) (Qualigens) and for gold

nanoparticles, chloroauric acid (HAuCl4) (Sd fine) were

used as received. Double-distilled deionized water was

used for all the experiments. Silver, gold and bimetallic

nanoparticles formations were carried out by taking

500 mg of dry S. platensis (blue green alga) in a 250 mL

Erlenmeyer flask with 10-3 M aqueous AgNO3, HAuCl4
and HAuCl4:AgNO3 with different molar concentrations

(100, 25:75, 50:50, 75:25 and 100%) and incubated at room

temperature. The pH was checked during the course of

reaction and it was found to be 5.6. The bioreduction of

pure AgNO3, HAuCl4 and HAuCl4:AgNO3 mixtures was

monitored using UV–Vis spectroscopy at regular intervals.

UV–Vis spectra were recorded as a function of time of

reaction on a UV–Vis 1601 Schimadzu spectrophotometer

operated at a resolution of 1 nm. The silver and gold

nanoparticles synthesized using S. platensis were subjected

to Fourier transform infrared (FT-IR) spectrum analysis to

identify (if possible) whether the biomolecules are stabi-

lizing and reducing agents. The complete reduction of Ag+

and AuCl4
- ions by S. platensis was monitored using UV–

Vis spectrum. The metal nanoparticles were centrifuged at

6,000 rpm for 15 min separately to isolate the silver and

gold nanoparticles from free proteins. The silver and gold

nanoparticle pellets obtained after centrifugation were

redisperesed in water prior to FT-IR analysis. For FT-IR

data, spectroscopy measurements were done on a Termo

nicolet arater 300 instrument in the diffuse reflectance

mode at a resolution of 4 cm-1 in KBr pellets. X-ray dif-

fraction (XRD) measurements of the bioreduced silver and

gold solutions drop-coated onto glass substrates were done

on a Siefert X-diffractometer instrument operating at a

voltage of 40 kV and a current of 30 mA with Cu Ka
radiation. Samples for high-resolution transmission elec-

tron microcopy (HR-TEM) analysis were prepared by

drop-coating Ag, Au and Au–Ag nanoparticles solutions on

to carbon-coated copper TEM grids. The films on the TEM

grids were allowed to stand for 2 min, following which, the

extra solution was removed using a blotting paper and the

grid was allowed to dry prior to measurement. HR-TEM

analysis was performed using a JEOL 3010 instrument

operated at an accelerating voltage of 120 kV.

Results and discussion

Addition of S. platensis biomass to 10-3 M aqueous

AgNO3 and HAuCl4 solutions led to the appearance of

yellowish brown and ruby red colour in solutions after

120 h of reaction, indicating the formation of silver and

gold nanoparticles, respectively. These colours arise due to

excitation of surface plasmon vibrations in the metal

nanoparticles [36]. Figures 1 and 2 show the UV–Vis

spectra recorded from the aqueous silver nitrate—S. plat-

ensis and auric chloride—S. platensis reaction medium, as

a function of time of reaction. The silver surface plasmon

resonance (SPR) band occurred at 424 nm and steadily
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Fig. 1 UV–Vis spectra recorded as a function of time of reaction of

aqueous solution of silver nitrate with S. platensis
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increased in intensity as a function of time of reaction

without any shift in the peak wavelength. In gold ion

reduction, the SPR band occurred at 530 nm. The S. plat-

ensis mediated syntheses of metal nanoparticles (silver and

gold) were observed to be stable in solution even 3 months

after their synthesis.

The silver nanoparticles synthesized using S. platensis

showed strong bands at 1,651, 1,545 and 1,241 cm-1

(Fig. 3a). In gold nanoparticles, strong bands at 1,653,

1,541 and 1,242 cm-1 were observed (Fig. 3b). These

bands correspond to the amide I–III bands of polypeptide/

proteins, respectively. Curve (C) of Fig. 3 represents the

FT-IR spectrum of the plain S. platensis showed peaks

indicating the presence of proteins and which might have

diffused from S. platensis in water and agree with those

reported in the literature [37, 38]. The overall observation

confirms the presence of protein in the samples of silver

and gold nanoparticles. Reports on various species of

cyanobacteria and algae having the ability to adsorb and

take up heavy metal ions [28–31] can be accounted here.

Interactions of transition metals appear due to be carboxyl

groups, polyphosphate and amino acids of algae [28, 32,

39] and indeed polysaccharides in the cyanobacterial cells

and water soluble polymer around the cells facilitate

binding of metal ions [40]. It has been reported that pos-

sible metal binding site in cyanobacteria is through the

formation of metallothioneins or metal binding proteins

that bind metal ions as metal thiolate [28, 41]. Gole et al.

[42] have stated that either through free amine groups or

cysteine residues, the protein can bind to gold nanoparticles

that lead to the stabilization of gold nanoparticles by sur-

face bound protein. It is therefore inferable that the

bioreduction property of S. platensis lies in its protein.

Figure 4a, b shows the XRD patterns obtained for the

silver and gold nanoparticles synthesized by single cell

protein S. platensis. The presence of intense peaks of

nanoparticles (111), (200) and (211) appeared which are

indexed as crystalline silver and gold face centered cubic

phase. The XRD pattern thus clearly shows that the silver

and gold nanoparticles formed by the reduction of Ag+ and

AuCl4
- ions by S. platensis are crystalline in nature.
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Fig. 2 UV–Vis spectra recorded as a function of time of reaction of

aqueous solution of chloroauric acid with S. platensis

Fig. 3 FT-IR spectra of (a) silver nanoparticles synthesized by

reduction of Ag+ ions by S. platensis (b) gold nanoparticles

synthesized by reduction of AuCl4
- ions by S. platensis (c) plain

S. platensis
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HR-TEM has provided further insight into the mor-

phology and size details of the silver and gold

nanoparticles. The HR-TEM images recorded from silver

and gold nanoparticle solutions are shown in Figs. 5a, b

and 6a, b. The silver and gold nanoparticles formed were

predominantly spherical with diameters ranging from 7 to

16 and 6 to 10 nm, respectively.

Present observation lends support to a previous study

where formation of spherical silver and triangular gold

nanoparticles was reported using the Aloe vera plant

extract [23]. Shiv et al. [22] demonstrated the neem leaf

mediated synthesis of Ag, Au and bimetallic Au core–Ag

shell nanoparticles. Further, silver and gold nanoparticles

have been synthesized using bacteria, fungi, yeasts [14, 15]

and amino acids [43]. There are also reports on the

microbes-mediated synthesis of alloy nanoparticles, both

extra and intracellularly [44, 45]. Recently, cyanobacte-

rium-mediated platinum nanoparticles’ synthesis by the

reaction of filamentous Plectonema boryamum with plati-

num (IV) chloride complex has also been reported.
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Fig. 4 XRD patterns of (a) silver and (b) gold nanoparticles

synthesized by treating S. platensis with silver nitrate and chloroauric

acid aqueous solution

Fig. 5 (a, b) HR-TEM images of silver nanoparticles formed by

reduction of Ag ions using S. platensis. The inset shows a typical

SAED pattern of a silver nanoparticle
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Biosynthesis of Au core–Ag shell nanoparticles using

S. platensis was monitored in the UV–Vis spectra. When

the AuCl4 and AgNO3 of different molar ratios (100, 25:75,

50:50, 75:25 and 100%) were exposed to S. platensis

biomass, a gradual shift of the plasmon resonance was

observed at 530, 509, 486, 464 and 424 nm, respectively,

after the reaction for 120 h. Change of colour from purple

to deep brown clearly indicated the formation of Au core–

Ag shell nanoparticles. The gradual change of colour was

found to be dependent on the rate of reduction of Ag+ ions

by S. platensis. Figure 7 shows the corresponding UV–Vis

absorption spectra. The observed gradual shift of SPR from

530 to 424 nm commensurated with the increasing Ag

mole fraction. This can be seen in Fig. 8, in which the UV–

Vis absorption peak position is plotted with respect to the

amount of Au content in the prepared samples. Bimetallic

nanoparticles synthesized by a simultaneous reduction of

two different metal salts are usually claimed to possess a

structure in which one of the two metals occupies the core

of the particles and the other forms a surrounding shell

[46]. Due to the difference in the reduction rate of the two

different metal ions, composite bimetallic nanoparticles are

assumed to have a core–shell structure, rather than forming

a homogenous mixture [47].

FT-IR spectrum recorded from plain S. platensis

(Fig. 9a) and bimetallic Au/Ag nanoparticles (Fig. 9b) are

shown. The peaks observed at 1,653 and 1,546 cm-1 are

identified as the amide I, II bands and are due to carbonyl

stretch and –N–H stretch vibrations in the amide linkages of

the proteins, respectively [42, 48–51]. The positions of

these bands are close to that reported for native proteins [42,

48–51] and are in excellent agreement with that observed in

gold colloid: pepsin bioconjucates [42]. The FT-IR results

thus show that the secondary structure of the proteins is not

affected as a consequence of reacting with the AuCl4
- ions

or binding with the bimetallic nanoparticles. The band at

Fig. 6 (a, b) HR-TEM images of gold nanoparticles synthesized by

reduction of AuCl4
- ions using S. platensis. The inset shows a typical

SAED pattern of a gold nanoparticle
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Fig. 7 UV–Vis absorption spectra of Au core–Ag shell nanoparticles

with varying mole ratios with metal ions concentration 10-3 M. All the

spectra have been normalized at their maxima (1) 100% Au, (2) 75:25%

Au:Ag, (3) 50:50% Au:Ag, (4) 25:75% Au:Ag and (5) 100% Ag
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approximately 1,450 cm-1 assigned to methylene scissor-

ing vibrations from the proteins in the solution [52].

Figure 10a-c shows HR-TEM images of bimetallic Au/Ag

nanoparticles in the range of 17–25 nm, which were pre-

dominantly spherical. The rate of formation of gold

nanoparticles was very much faster when compared with

the silver nanoparticles formation, suggesting that the gold

nanoparticles are formed first and the silver nanoparticles

are formed later. It was interesting to note that the silver

nanoparticles formed after the equilibration of the gold

nanoparticles assembled on to the surface of the larger gold

nanoparticles as evidenced by the formation of peculiar Au

core–Ag shell structures. Several material scientists have

synthesized various types of core–shell nanoparticles

through physical and chemical methods [46, 53, 54].

Bimetallic nanoparticles, either as alloys or as core–shell

structures, exhibit unique electronic, optical and catalytic

properties [55–59] and have important biological applica-

tions in DNA sequencing [60]. Core–shell nanoparticles in

particular have attracted significant topical interest since the

addition of the second metal in the form of a shell provides

control over the physical and chemical properties of the

nanoparticles [61–63]. Various groups have demonstrated

that properties such as SPR [64] and surface-enhanced

Raman scattering associated with gold and silver nanopar-

ticles [65, 66] can be tailored by synthesizing these

nanoparticles in the core–shell configuration. The deposi-

tion of one metal on the preformed monometallic

nanoparticle surface of other metals appears to be very

effective and is desirable from the application point of view

[67]. Senapati et al. [45] envisaged that chemical synthesis

may still lead to the presence of some toxic chemical spe-

cies adsorbed on the surface that may have adverse effects

in medical applications. On this basis, the present study has

its importance. Although therapeutic potential of S. plat-

ensis is promising, its bioreduction property of inorganic

materials is yet to be exploited. There are good possibilities

for the biomedical and biotechnological applications of

bimetallic nanoparticles since they are synthesized extra-

cellularly, quite stable and eco friendly in nature.

Conclusion

In this study, we have demonstrated the extracellular bio-

synthesis of silver, gold and bimetallic nanoparticles using

S. platensis. The formation of these nanoparticles is aided

by the polypeptide/proteins of the above alga. The char-

acterization of Ag, Au and Au/Ag 1:1 ratio exposed to this

blue green alga by UV, FT-IR, XRD and HR-TEM anal-

yses to confirm the reduction and it is believed that protein

might have played an important role in the stabilization of

Ag, Au and Au/Ag bimetallic nanoparticles. The use of

blue green alga offers a means of developing ‘nanofacto-

ries’ for production of metal nanoparticles and it is clear
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Fig. 8 Positions of surface plasmon bands plotted with respect to the

mole fraction of Au atoms in bimetallic nanoparticles

Fig. 9 FT-IR spectra of (a) plain S. platensis (b) bimetallic Au/Ag

nanoparticles synthesized by simultaneous of Ag+ and AuCl4
- ions

by S. platensis
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that interaction of single-cell protein (S. platensis) with

inorganic materials can benefit much from effectively

interfacing nanoparticles and biology.

Acknowledgements G.S. and K.G. thank the Department of Sci-

ence and Technology (DST), New Delhi, Government of India, for

financial assistance. The HR-TEM assistance of SAIF, IIT, Chennai,

is gratefully acknowledged. The authors thank Prof. L. Kannan, Vice

Chancellor, Thiruvalluvar University for his valuable comments.

References

1. Brust M, Kiely CJ (2002) Colloids Surf A Physicochem Eng Asp

202:175. doi:10.1016/S0927-7757(01)01087-1

2. Kowshik M, Ashtaputre S, Kharrazi S, Vogel W, Urban J,

Kulkarani SK et al (2003) Nanotechnology 14:95. doi:10.1088/

0957-4484/14/1/321

3. Huang H, Yang X (2005) Colloids Surf A Physicochem Eng Asp

255:11. doi:10.1016/j.colsurfa.2004.12.020

4. Mandal S, Phadtare S, Sastry M (2005) Curr Appl Phys 5:118.

doi:10.1016/j.cap.2004.06.006

5. Wang C, Flynn NT, Langer R (2004) Adv Mater 16:1074. doi:

10.1002/adma.200306516

6. Nicewarner-Pena SR, Freeman RG, Reiss BD, He L, Pena J,

Walton ID et al (2001) Science 294:137. doi:10.1126/science.

294.5540.137

7. Han M, Gao X, Su JZ, Nie S (2001) Nat Biotechnol 19:631. doi:

10.1038/90228

8. Joshi HM, Bhumkar DR, Kalpana J, Varsha P, Murali S (2006)

Langmuir 22:300. doi:10.1021/la051982u

9. Zhilong Shi, Neoh KG, Kang ET (2004) Langmuir 20:6847. doi:

10.1021/la049132m

10. Elechiguerra JL, Burt JL, Morones RJ, Camacho A, Gao X, Lara

HH et al (2005) Nanobiotechnol 3:1. doi:10.1186/1477-3155-3-1

11. Taton TA, Mirkin CA, Letsinger RL (2000) Science 289:1757.

doi:10.1126/science.289.5485.1757

12. Cao YC, Jin R, Mirkin CA (2002) Science 297:1536. doi:

10.1126/science.297.5586.1536

13. Sandhu KK, McIntosh CM, Simard JM, Smith SW, Rotello VM

(2002) Bioconjugate Chem B 13:3. doi:10.1021/bc015545c

14. Gericke M, Pinches A (2006) Hydrometallurgy 83:132. doi:

10.1016/j.hydromet.2006.03.019

15. Mandal D, Bolander ME, Mukhopadhyay C, Sarkar G, Muk-

herjee P (2006) Appl Microbiol Biotechnol 69:485. doi:10.1007/

s00253-005-0179-3

16. Mann S (1993) Nature 365:499. doi:10.1038/365499a0

17. Oliver S, Kuperman A, Coombs N, Lough A, Ozin GA (1995)

Nature 378:47. doi:10.1038/378047a0

18. Kroger N, Deutzmann R, Sumper M (1999) Science 286:1129.

doi:10.1126/science.286.5442.1129

19. Shankar SS, Rai A, Ankamwar B, Singh A, Ahmad A, Sastry M

(2004) Nat Mater 3:482. doi:10.1038/nmat1152

20. Shankar SS, Ahmad A, Pasricha R, Sastry M (2003) J Mater

Chem 13:1822. doi:10.1039/b303808b

Fig. 10 (a–c) HR-TEM images

of bimetallic Au/Ag

nanoparticles synthesized by

simultaneous reduction of Ag+

and AuCl4
- ions from an

aqueous bimetallic solution of

1:1 molar ratio AgNO3 and

HAuCl4. The inset shows a

typical SAED pattern of a

bimetallic Au core–Ag shell

nanoparticle

J Mater Sci (2008) 43:5115–5122 5121

123

http://dx.doi.org/10.1016/S0927-7757(01)01087-1
http://dx.doi.org/10.1088/0957-4484/14/1/321
http://dx.doi.org/10.1088/0957-4484/14/1/321
http://dx.doi.org/10.1016/j.colsurfa.2004.12.020
http://dx.doi.org/10.1016/j.cap.2004.06.006
http://dx.doi.org/10.1002/adma.200306516
http://dx.doi.org/10.1126/science.294.5540.137
http://dx.doi.org/10.1126/science.294.5540.137
http://dx.doi.org/10.1038/90228
http://dx.doi.org/10.1021/la051982u
http://dx.doi.org/10.1021/la049132m
http://dx.doi.org/10.1186/1477-3155-3-1
http://dx.doi.org/10.1126/science.289.5485.1757
http://dx.doi.org/10.1126/science.297.5586.1536
http://dx.doi.org/10.1021/bc015545c
http://dx.doi.org/10.1016/j.hydromet.2006.03.019
http://dx.doi.org/10.1007/s00253-005-0179-3
http://dx.doi.org/10.1007/s00253-005-0179-3
http://dx.doi.org/10.1038/365499a0
http://dx.doi.org/10.1038/378047a0
http://dx.doi.org/10.1126/science.286.5442.1129
http://dx.doi.org/10.1038/nmat1152
http://dx.doi.org/10.1039/b303808b


21. Shiv SS, Rai A, Ahmad A, Sastry M (2004) J Colloid Interface

Sci 275:496. doi:10.1016/j.jcis.2004.03.003

22. Shiv SS, Ahmed A, Sastry M (2003) Biotechnol Prog 19:1627.

doi:10.1021/bp034070w

23. Prathap CS, Chaudhary M, Pasricha R, Ahmad A, Sastry M

(2006) Biotechnol Prog 22:577. doi:10.1021/bp0501423

24. Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X et al (2007) Nano-

technology 18:105104. doi:10.1088/0957-4484/18/10/105104

25. Scarano G, Morelli E (2003) Plant Sci 165:803. doi:10.1016/

S0168-9452(03)00274-7

26. Konishi Y, Nomura T, Tsukiyama T, Saitoh N (2004) Trans

Mater Res Soc Jpn 29:2341

27. Singaravelu G, Arockyamary JS, Ganesh Kumar V, Govindaraju

K (2007) Colloids Surf B Biointerf 57:97. doi:10.1016/

j.colsurfb.2007.01.010

28. Gadd GM (1990) Experientia 46:834. doi:10.1007/BF01935534

29. Kuyucak N, Volesky B, Raton FL (1990) Biosorption of heavy

metals. CRC Press, Boca Raton, p 173

30. Bender J, Gould JP, Vatcharapijiarn Y, Young JS, Phillip S

(1994) Water Environ Res 66:679

31. Hameed A, Hasnain S (2005) Chin J Oceanol Limnol 23:433. doi:

10.1007/BF02842688

32. Gardea-Torresdey JL, Becker-Hapak KM, Hosea JM, Darnell

DW (1990) Environ Sci Technol 19:1372. doi:10.1021/

es00079a011

33. Kaplan D, Christiaen D, Arad SM (1987) Appl Environ Micro-

biol 53:2953

34. Zhang W, Majidi V (1994) Environ Sci Technol 28:1577. doi:

10.1021/es00058a007

35. Ayehunie S, Belay A, Baba T, Ruprecht R (1998) J Acq Imm

Differ Syn 18:7

36. Mulvaney P (1996) Langmuir 12:788. doi:10.1021/la9502711

37. Caruso F, Furlong DN, Ariga K, Ichinose I, Kunitake T (1998)

Langmuir 14:4559. doi:10.1021/la971288h

38. Van de Weert M, Haris PI, Hennink WE, Crommelin DJA (2001)

Anal Biochem 297:160. doi:10.1006/abio.2001.5337

39. Mohamed ZA (2001) Water Res 35:4405. doi:10.1016/

S0043-1354(01)00160-9

40. Philippis RD, Sili C, Paperi R, Vincenzini M (2001) J Appl

Phycol 13:293. doi:10.1023/A:1017590425924

41. Gardea-Torresdey JL, Aarenas JI, Webb R, Fransisco NMC,

Tieman KJ (1997) J Hazard Subst Res 3:1

42. Gole A, Dash CV, Ramachandran V, Mandale AB, Sainkar SR,

Rao M et al (2001) Langmuir 17:1674. doi:10.1021/la001164w

43. Selvakannan PR, Mandal S, Phadtare S, Renu Pasricha, Sastry M

(2003) Langmuir 19:3545. doi:10.1021/la026906v

44. Nair B, Pradeep T (2002) Cryst Growth Des 2:293. doi:

10.1021/cg0255164

45. Senapati S, Ahmad A, Khan MI, Sastry M, Kumar R (2005)

Small 1:517. doi:10.1002/smll.200400053

46. Hu Y, Li C, Gu F, Zhao Y (2007) J Alloy Comp 432:L5. doi:

10.1016/j.jallcom.2006.05.134

47. Han SW, Kim Y, Kim K (1998) J Colloid Interface Sci 208:272.

doi:10.1006/jcis.1998.5812

48. Macdonald IDG, Smith WE (1996) Langmuir 12:706. doi:

10.1021/la950256w

49. Keating CD, Kovaleski KK, Natan MJ (1998) J Phys Chem B

102:9414. doi:10.1021/jp982724r

50. Kumar CV, McLendon GL (1997) Chem Mater 9:863. doi:

10.1021/cm960634y

51. Gole A, Dash C, Sainkar SR, Mandale AB, Rao M, Sastry M

(2000) Anal Chem 72:1401. doi:10.1021/ac000099s

52. Ahmed A, Mukherjee P, Senapati S, Mandal D, Islam Khan M,

Kumar R et al (2003) Colloids Surf B 28:313. doi:10.1016/

S0927-7765(02)00174-1

53. Panigrahi S, Kundu S, Ghosh SK, Sudip Nath, Pal T (2005)

Colloids Surf A 264:133. doi:10.1016/j.colsurfa.2005.04.017

54. Wang S, Shi G (2007) Mater Chem Phys 102:255. doi:

10.1016/j.matchemphys.2006.12.014

55. Schmid G (1994) Clusters and colloids. VCH, Weinheim

56. Toshima N, Yonezawa (1998) J Chem 11:1179

57. Malin MP, Murphy CJ (2002) Nano Lett 2:1235. doi:

10.1021/nl025774n

58. Ah CS, Hong SD, Jang DJ (2001) J Phys Chem B 105:7871. doi:

10.1021/jp0113578

59. Mallik K, Mandal M, Pradhan N, Pal T (2001) Nano Lett 1:319.

doi:10.1021/nl0100264

60. Cao YW, Jin R, Mirkin CA (2001) J Am Chem Soc 123:7961.

doi:10.1021/ja011342n

61. Caruso F (2001) Adv Mater 13:11. doi:10.1002/1521-4095

(200101)13:1B11::AID-ADMA11C3.0.CO;2-N

62. Schmid G (1992) Chem Rev 92:1709. doi:10.1021/cr00016a002

63. III Aiken JD, Finke RG (1999) J Mol Catal A 145:1. doi:10.1016/

S1381-1169(99)00098-9

64. Henglein (1993) J Phys Chem 97:457

65. Srnova-Sloufova I, Vickova B, Bastl Z, Hasslett TL (2004)

Langmuir 20:3407. doi:10.1021/la0302605

66. Bohren CF, Huffman DR (1983) Absorption and scattering of

light by small particles. Wiley, New York

67. Rai A, Chaudhary M, Ahmed A, Bhargava S, Sastry M (2007)

Mater Res Bull 42:1212. doi:10.1016/j.materresbull.2006.10.019

5122 J Mater Sci (2008) 43:5115–5122

123

http://dx.doi.org/10.1016/j.jcis.2004.03.003
http://dx.doi.org/10.1021/bp034070w
http://dx.doi.org/10.1021/bp0501423
http://dx.doi.org/10.1088/0957-4484/18/10/105104
http://dx.doi.org/10.1016/S0168-9452(03)00274-7
http://dx.doi.org/10.1016/S0168-9452(03)00274-7
http://dx.doi.org/10.1016/j.colsurfb.2007.01.010
http://dx.doi.org/10.1016/j.colsurfb.2007.01.010
http://dx.doi.org/10.1007/BF01935534
http://dx.doi.org/10.1007/BF02842688
http://dx.doi.org/10.1021/es00079a011
http://dx.doi.org/10.1021/es00079a011
http://dx.doi.org/10.1021/es00058a007
http://dx.doi.org/10.1021/la9502711
http://dx.doi.org/10.1021/la971288h
http://dx.doi.org/10.1006/abio.2001.5337
http://dx.doi.org/10.1016/S0043-1354(01)00160-9
http://dx.doi.org/10.1016/S0043-1354(01)00160-9
http://dx.doi.org/10.1023/A:1017590425924
http://dx.doi.org/10.1021/la001164w
http://dx.doi.org/10.1021/la026906v
http://dx.doi.org/10.1021/cg0255164
http://dx.doi.org/10.1002/smll.200400053
http://dx.doi.org/10.1016/j.jallcom.2006.05.134
http://dx.doi.org/10.1006/jcis.1998.5812
http://dx.doi.org/10.1021/la950256w
http://dx.doi.org/10.1021/jp982724r
http://dx.doi.org/10.1021/cm960634y
http://dx.doi.org/10.1021/ac000099s
http://dx.doi.org/10.1016/S0927-7765(02)00174-1
http://dx.doi.org/10.1016/S0927-7765(02)00174-1
http://dx.doi.org/10.1016/j.colsurfa.2005.04.017
http://dx.doi.org/10.1016/j.matchemphys.2006.12.014
http://dx.doi.org/10.1021/nl025774n
http://dx.doi.org/10.1021/jp0113578
http://dx.doi.org/10.1021/nl0100264
http://dx.doi.org/10.1021/ja011342n
http://dx.doi.org/10.1021/cr00016a002
http://dx.doi.org/10.1016/S1381-1169(99)00098-9
http://dx.doi.org/10.1016/S1381-1169(99)00098-9
http://dx.doi.org/10.1021/la0302605
http://dx.doi.org/10.1016/j.materresbull.2006.10.019

	Silver, gold and bimetallic nanoparticles production �using single-cell protein (Spirulina platensis) Geitler
	Abstract
	Introduction
	Experimental procedure
	Results and discussion
	Conclusion
	Acknowledgements
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


